
,

Feature Selection with mlr3fselect : : CHEAT SHEET mlr
, Class Overview

The package provides a set of R6 classes which
allow to (a) define general feature selection in-
stances and (b) run algorithms which optimize on
these. (a) is called a FSelectInstanceSingleCrit or
FSelectInstaneMultiCrit, which define a blackbox
optimization function that maps feature subsets
to resampled performance values for arbitrary
performance measures.

Measure

Learner

Task

Resampling

Terminator

FSelectInstance* FSelector

$eval_batch()

$optimize()$new()

Terminators - When to stop
Construction: trm(.key, ...)

I evals (n_evals)
After a given amount of iterations.

I clock_time (secs , stop_time)
After a given absolute time.

I model_time (secs)
After a given training time.

I perf_reached (level)
After a specific performance was reached.

I stagnation (iters , threshold)
After the performance stagnated for given
iterations.

I stagnation_batch (n , threshold)
After the performance stagnated for given
batches.

as.data.table(mlr_terminators)

Lists all available terminators.

FSelectInstance* - Search Scenario
Evaluator and container for resampled perfor-
mances of feature subsets. The main (internal)
function eval_batch(xdt) calls benchmark()
to evaluate a table of feature subsets. Also stores
archive of all evaluated feature subsets and the
final result.

instance = FSelectInstanceSingleCrit$new(
task, learner, resampling, measure,
terminator)

Set store_benchmark_result = TRUE to
store resamplings of evaluations and
store_models = TRUE to store associated
models.

Example
instance = FSelectInstanceSingleCrit$new(

tsk("iris"), lrn("classif.rpart"), rsmp("cv"),

msr("classif.ce"), trm("evals"))

fselector = fs("random_search")

fselector$optimize(instance)

Use FSelectInstanceMultiCrit for multi-criteria
tuning.

FSelector - Search Strategy
Feature Selection strategy. Generates feature sub-
sets and passes these to FSelectInstance*
for evaluation until termination. Creation:
fs(.key, ...)

I random_search (batch_size)
Random search.

I exhaustive_search (max_features)
Exhaustive Search.

I sequential (strategy)
Sequential Selection.

I rfe (feature_fraction , recursive)
Recursive Feature Elimination.

I design_points (batch_size , design)
User supplied feature subsets.

as.data.table(mlr_fselectors)

Lists all available feature selection algorithms.

Executing the Feature Selection

fselector$optimize(instance)

Starts the feature selection. FSelector
generates feature subsets and passes
these to the $eval_batch() method of the
FSelectInstance* until the budget of the
Terminator is exhausted.

instance$archive$data()

Returns all evaluated feature subsets and their
resampling results.

instance$archive$data()

Petal.Length Petal.Width Sepal.Length Sepal.Width classif.ce uhash

1: TRUE TRUE TRUE TRUE 0.053 23b...

2: FALSE TRUE TRUE TRUE 0.042 45c...

uhash refers to instance$archive$benchmark_result .

instance$result

Returns data.table with optimal feature subset
and estimated performance.

task$select(instance$result_feature_set)

Set optimized feature subset in Task .

AutoFSelector - Select before Train
Wraps learner and performs integrated feature
selection.

at = AutoFSelector$new(
learner, resampling, measure,
terminator, fselector)

Inherits from class Learner . Training starts fea-
ture selection on the training set. After completion
the learner is trained with the "optimal" feature
subset on the given task.

at$train(task)
at$predict(task, row_ids)

Nested Resampling
Resampling the AutoFSelector results in nested
resampling with an inner and outer loop.

Example
resampling_inner = rsmp("holdout")

evals20 = trm("evals", n_evals = 20)

at = AutoFSelector$new(learner, resampling_inner,

measure, evals20, fselector)

at$store_fselect_instance = TRUE

resampling_outer = rsmp("cv", folds = 2)

rr = resample(task, at, resampling_outer,

store_models = TRUE)

as.data.table(rr)

... learner resampling iteration prediction

... <AutoFSelector> <ResamplingCV> 1 <PredictionClassif>

... <AutoFSelector> <ResamplingCV> 2 <PredictionClassif>

rr$aggregate()

Aggregates performances of outer folds.

as.data.table(rr)$learner[[1]]$fselect_result

Retrieves inner feature selection results.

Logging and Parallelization

lgr::get_logger("bbotk")$set_threshold("<level>")

Change log-level only for mlr3fselect.

future::plan(strategy)

Sets the parallelization backend. Speeds up fea-
ture selection by running iterations in parallel.

mlr-org.com, cheatsheets.mlr-org.com

https://mlr-org.com
https://cheatsheets.mlr-org.com

