Feature Selection with mir3fselect::CHEAT SHEET

Class Overview

The package provides a set of R6 classes which allow to (a)
define general feature selection instances; (b) run black-box
optimzers; (c) combine learners with feature selection (for nested
resampling).
Learner

Task [v
$new| $optimize()
Resampling e Qb FSelectInstance* ------------ > FSelector
Measure 4 |
$eval_batch()
Terminator -

[NB: In many table prints we suppres cols for readability.]

Terminators - When to stop

Construction: trm(.key, ...)

e evals(n_evals)
After iterations.
* run_time (secs)
After training time.
e clock_time (stop_time)
At given timepoint.
e perf_reached (level)
After performance was reached.
e stagnation (iters, threshold)
After performance stagnated.
e stagnation_batch (n, threshold)
After performance stagnated for batches.
¢ combo (list_of_terms, any=TRUE)
Combine terminators with AND or OR.

as.data.table(mlr_terminators) # list all

Lists all available terminators.

FSelectinstance* - Search Scenario

Evaluator and container for resampled performances of feature
subsets. The (internal) function eval_batch(xdt) calls
benchmark() to evaluate a table of feature subsets. Stores
archive of all evaluated feature subsets and the final result.

instance = FSelectInstanceSingleCritSnew(task,
learner, resampling, measure, terminator)

store_benchmark_result = TRUE to store resampled
evals and store_models = TRUE for fitted models.

Example

instance = FSelectInstanceSingleCrit$new(task, learner, resampling, measure,
terminator)

fselector = fs("random_search”, batch_size = 18)

fselectorSoptimize(instance)

instanceSresult

Use FSelectInstanceMultiCrit for multi-criteria feature
selection.

FSelector - Search Strategy

Generates feature subsets and passes to instance for evaluation
until termination. Creation: fs(.key, ...)

¢ random_search (batch_size)
Random search.

e exhaustive_search (max_features)
Exhaustive Search.

¢ sequential (strategy)
Sequential Selection.

e rfe(feature_fraction, recursive)
Recursive Feature Elimination.

e design_points (batch_size, design)
User supplied feature subsets.

as.data.table(mlr_fselectors) # list all

Lists all available feature selection algorithms.

Logging and Parallelization
1gr::get_logger("bbotk ")Sset_threshold("<level>")

Change log-evel only for mir3fselect.

future: :plan(strategy)

Sets the parallelization backend. Speeds up feature selection by
running iterations in parallel.

Executing the Feature Selection

fselectorSoptimize(instance)

as.data.table(instanceSarchive)

instanceSresult jatatable row with optimal feature subset and estimated pe.
Get evaluated feature subsets and performances; and result.
taskSselect(instanceSresult_feature_set)

Set optimized feature subset in Task.

Example

instance = fselect(method = "random_search”, task = tsk("iris"), learner = learner,

resampling = rsmp (“holdout"), measure = msr("classif.ce"), term_evals = 20)

Use fselect ()-shortcut.

AutoFSelector - Select before Train
Wraps learner and performs integrated feature selection.

afs = AutoFSelectorSnew(learner,
measure, terminator, fselector)

resampling,

Inherits from class Learner. Training starts feature selection on
the training set. After completion the learner is trained with the
“optimal” feature subset on the given task.

afsStrain(task)

afsSpredict(task, row_ids)

afsSlearner

Returns learner trained on full data set with optimized feature
subset.

afs$fselect_result

Access feature selection result.

afs = auto_fselector(method = "random_search",
learner, resampling, measure, term_evals = 20)

Use shortcut to create AutoFSelector.

Nested Resampling

Just resample AutoFSelector; now has inner and outer loop.

Example

inner = rsmp("holdout")

afs = auto_fselector(method = "random_search’, learner, inner, measure, term_evals =
208)

outer = rsmp(“cv", folds = 2)

rr = resample(task, afs, outer, store_models = TRUE)

as.data.table(rr)

Check inner results for stable features.

rréscore()

Predictive performances estimated on the outer resampling.

extract_inner_fselect_archives(rr)

All evaluated feature subsets.

rrSaggregate()

> classif.ce
> 0.05333333

Aggregates performances of outer resampling iterations.

rr = fselect_nested(method = "random_search”,
learner, inner, outer, measure,

task,
term_evals = 20)

Use shortcut to execute nested resampling.

https://mlr-org.com/
https://cheatsheets.mlr-org.com/

