
Dataflow programming with mlr3pipelines::CHEAT SHEET
Introduction

Combine ML operations to flexible pipelines and processing
graphs, which can be configured trained, resampled, tuned as any
regular learner. The main purpose of a Graph is to build combined
preprocessing and model fitting pipelines that can be used as a
Learner.

Each operation in the above example is a PipeOp which
transforms the data in each step. PipeOps are chained with the
%>>% operator.

PipeOp

Flow operation with $train() and $predict() step.

Construction example: pca = po(“pca”)`

$train(input): Named list
$predict(input): Named list
$state: Learned parameters
$param_set: See hyperparameters

Popular PipeOps

Class Key Operation
PipeOpRemoveConstants “removeconstants” Repair Tasks
PipeOpScale “scale” Scale Features
PipeOpImputeMean “impute” Impute NAs
PipeOpFilter “filter” Feature Filter
PipeOpEncode “encode” Factor Encoding
PipeOpPCA “pca” PCA
PipeOpSelect “select” Restrict Columns
PipeOpColApply “colapply” Transform Columns
PipeOpClassBalancing “classbalancing” Imbalanced Data
PipeOpLearner “learner” Use Learner
PipeOpLearnerCV “learner_cv” Crossval Learner
PipeOpMutate “mutate” Fearure Engineering
PipeOpChunk “chunk” Split Data
PipeOpSubsample “subsample” Subsample Rows
PipeOpFeatureUnion “featureunion” Combine Features
PipeOpFixFactors “fixfactors” Handle Unknown Levels
PipeOpNOP “nop” Do Nothing

Full list: as.data.table(mlr_pipeops)

Graph

Connects PipeOps with edges to control data flow during
training and prediction. Input is sent to sources (no in-edges),
output is read from sinks (no out-edges).
Important methods and slots:

Display: print(gr),gr$plot(html = TRUE)
Accessing PipeOps: gr$pipeops 

Named list of all contained POs.

Graph Construction
The %>>% operator takes either a PipeOp or a Graph on each of
its sides and connects all left-hand outputs to the right-hand
inputs. For full control, connect PipeOps explicitly:

GraphLearner

GraphLearner behave like Learner and enable all mlr3
features: grl = GraphLearner$new(gr). See slots
$encapsulate for debugging and $model for results after
training.

Linear Graphs
Concatenate POs with %>>%:

Example

Debugging and Intermediate Results

Store intermediate results of PipeOps.

Returns intermediate result of $train() and $predict(),
e.g. modified task returned by encode pipeop.

Internal state of graph learner. Contains fitted models in $model.

Hyperparameters

For POs: Exactly as in a Learner.

For Graph / GraphLearner: All HPs are collected in a global
ParamSet stored in $param_set. IDs are prefixed with the
respective PipeOp’s id.

Tuning
Can jointly tune any Pipeline.

Example

Usage of AutoTuner is identical.

Feature Engineering
PipeOpMutate adds new features. This works by providing
expressions in a list.

Example

Logging

Change log-level only for mlr3pipelines.

Nonlinear Graphs

gunion() arranges PipeOps or Graphs next to each other in a
disjoint graph union.

pipeline_greplicate() creates a new Graph containing n
copies of the input (PipeOp or Graph).

PipeOpFeatureUnion aggregates features from all input
tasks into a single Task.

Example

Example

Branching
Controls the path execution. Only one branch can be active. Which
one is controlled by a hyperparameter. Unbranching ends the
forking.

Example

Tuning the branching selection enables powerful model selection.

gr = Graph$new() 

gr$add_pipeop(po("pca")) 

gr$add_pipeop(lrn("classif.rpart")) 

gr$add_edge("pca", "classif.rpart")

task = tsk("penguins") 


gr = po("scale") %>>% po("encode") %>>% 


  po("imputemean") %>>% lrn("classif.rpart") 


grl = GraphLearner$new(gr) 


# access the scale pipeop:


grl$graph$pipeops$scale 


grl$train(task) 


grl$predict(task) 


rr = resample(task, grl, rsmp("cv", folds = 3))

grl$graph$keep_results = TRUE

grl$graph$pipeops$encode$.result

grl$state

enc = po("encode") 

enc$param_set 

enc$param_set$values = list(method="one-hot") 

po("encode", param_vals = list(method="one-hot"))

gr = po("encode") %>>% lrn("classif.rpart") 


grl = GraphLearner$new(gr) 


tune_ps = ParamSet$new(list(


  ParamFct$new("encode.method", 


    levels = c("one-hot", "poly")), 


  ParamDbl$new("classif.rpart.cp", 


    lower = 0, upper = 0.05) 


)) 


tt = trm("evals", n_evals = 20) 


rs = rsmp("holdout") 


inst = TuningInstanceSingleCrit$new(task, grl, rs, 


  msr("classif.ce"), tt, tune_ps) 


tuner = tnr("random_search") 


tuner$optimize(inst)

task = tsk("iris") 


mutations = list( 


  Sepal.Sum = ~ Sepal.Length + Sepal.Width) 


mutate = po("mutate", param_vals = 


  list(mutation = mutations)) 


GraphLearner$new(mutate %>>% lrn("classif.rpart"))

lg = lgr::get_logger("mlr3pipelines") 

lg$set_threshold("<level>")

# train on orig and pca features


gunion(list(po("nop"), po("pca"))) %>>% 


  po("featureunion") %>>% lrn("classif.rpart")

pr = po("subsample") %>>% lrn("classif.rpart") 


bagging = ppl("greplicate", pr, n = 10) %>>%


  po("classifavg", innum = 10)

gr = ppl("branch", list( 


  pca = po("pca"), scale = po("scale")) 


) 


# set the "pca" path as the active one:


gr$param_set$values$branch.selection = "pca"

cheatdown on GitHub

https://github.com/be-marc/cheatdown

