
Dataflow programming with mlr3pipelines::CHEAT SHEET
Introduction

Combine ML operations to �exible pipelines and processing
graphs, which can be con�gured trained, resampled, tuned as any
regular learner. The main purpose of a Graph is to build combined
preprocessing and model �tting pipelines that can be used as a
Learner.

Each operation in the above example is a PipeOp which
transforms the data in each step. PipeOps are chained with the
%>>% operator.

PipeOp

Flow operation with $train() and $predict() step.

Construction example: pca = po(“pca”)`

$train(input): Named list
$predict(input): Named list
$state: Learned parameters
$param_set: See hyperparameters

Popular PipeOps

Class Key Operation
PipeOpRemoveConstants “removeconstants” Repair Tasks
PipeOpScale “scale” Scale Features
PipeOpImputeMean “impute” Impute NAs
PipeOpFilter “�lter” Feature Filter
PipeOpEncode “encode” Factor Encoding
PipeOpPCA “pca” PCA
PipeOpSelect “select” Restrict Columns
PipeOpColApply “colapply” Transform Columns
PipeOpClassBalancing “classbalancing” Imbalanced Data
PipeOpLearner “learner” Use Learner
PipeOpLearnerCV “learner_cv” Crossval Learner
PipeOpMutate “mutate” Fearure Engineering
PipeOpChunk “chunk” Split Data
PipeOpSubsample “subsample” Subsample Rows
PipeOpFeatureUnion “featureunion” Combine Features
PipeOpFixFactors “�xfactors” Handle Unknown Levels
PipeOpNOP “nop” Do Nothing

Full list: as.data.table(mlr_pipeops)

Graph

Connects PipeOps with edges to control data �ow during
training and prediction. Input is sent to sources (no in-edges),
output is read from sinks (no out-edges).
Important methods and slots:

Display: print(gr),gr$plot(html = TRUE)
Accessing PipeOps: gr$pipeops  
Named list of all contained POs.

Graph Construction
The %>>% operator takes either a PipeOp or a Graph on each of
its sides and connects all left-hand outputs to the right-hand
inputs. For full control, connect PipeOps explicitly:

GraphLearner

GraphLearner behave like Learner and enable all mlr3
features: grl = GraphLearner$new(gr). See slots
$encapsulate for debugging and $model for results after
training.

Linear Graphs
Concatenate POs with %>>%:

Example

Debugging and Intermediate Results

Store intermediate results of PipeOps.

Returns intermediate result of $train() and $predict(),
e.g. modi�ed task returned by encode pipeop.

Internal state of graph learner. Contains �tted models in $model.

Hyperparameters

For POs: Exactly as in a Learner.

For Graph / GraphLearner: All HPs are collected in a global
ParamSet stored in $param_set. IDs are pre�xed with the
respective PipeOp’s id.

Tuning
Can jointly tune any Pipeline.

Example

Usage of AutoTuner is identical.

Feature Engineering
PipeOpMutate adds new features. This works by providing
expressions in a list.

Example

Logging

Change log-level only for mlr3pipelines.

Nonlinear Graphs

gunion() arranges PipeOps or Graphs next to each other in a
disjoint graph union.

pipeline_greplicate() creates a new Graph containing n
copies of the input (PipeOp or Graph).

PipeOpFeatureUnion aggregates features from all input
tasks into a single Task.

Example

Example

Branching
Controls the path execution. Only one branch can be active. Which
one is controlled by a hyperparameter. Unbranching ends the
forking.

Example

Tuning the branching selection enables powerful model selection.

gr = Graph$new()  
gr$add_pipeop(po("pca"))  
gr$add_pipeop(lrn("classif.rpart"))  
gr$add_edge("pca", "classif.rpart")

task = tsk("penguins")  

gr = po("scale") %>>% po("encode") %>>%  

  po("imputemean") %>>% lrn("classif.rpart")  

grl = GraphLearner$new(gr)  

# access the scale pipeop: 

grl$graph$pipeops$scale  

grl$train(task)  

grl$predict(task)  

rr = resample(task, grl, rsmp("cv", folds = 3))

grl$graph$keep_results = TRUE

grl$graph$pipeops$encode$.result

grl$state

enc = po("encode")  
enc$param_set  
enc$param_set$values = list(method="one-hot")  
po("encode", param_vals = list(method="one-hot"))

gr = po("encode") %>>% lrn("classif.rpart")  

grl = GraphLearner$new(gr)  

tune_ps = ParamSet$new(list( 

  ParamFct$new("encode.method",  

    levels = c("one-hot", "poly")),  

  ParamDbl$new("classif.rpart.cp",  

    lower = 0, upper = 0.05)  

))  

tt = trm("evals", n_evals = 20)  

rs = rsmp("holdout")  

inst = TuningInstanceSingleCrit$new(task, grl, rs,  

  msr("classif.ce"), tt, tune_ps)  

tuner = tnr("random_search")  

tuner$optimize(inst)

task = tsk("iris")  

mutations = list(  

  Sepal.Sum = ~ Sepal.Length + Sepal.Width)  

mutate = po("mutate", param_vals =  

  list(mutation = mutations))  

GraphLearner$new(mutate %>>% lrn("classif.rpart"))

lg = lgr::get_logger("mlr3pipelines")  
lg$set_threshold("<level>")

# train on orig and pca features 

gunion(list(po("nop"), po("pca"))) %>>%  

  po("featureunion") %>>% lrn("classif.rpart")

pr = po("subsample") %>>% lrn("classif.rpart")  

bagging = ppl("greplicate", pr, n = 10) %>>% 

  po("classifavg", innum = 10)

gr = ppl("branch", list(  

  pca = po("pca"), scale = po("scale"))  

)  

# set the "pca" path as the active one: 

gr$param_set$values$branch.selection = "pca"

cheatdown on GitHub

https://github.com/be-marc/cheatdown

