Hyperparameter Tuning with mir3tuning::CHEAT SHEET

Class Overview

The package provides a set of R6 classes which allow to (a)
define general hyperparameter (HP) tuning instances, ie., the
black-box objective that maps HP configurations (HPCs) to
resampled performance values; (b) run black-box optimzers; (c)
combine learners with tuners (for nested resampling).

Learner 9
Task 1
R li | l v
ESamPINGNN | ¢ ewi $optimize()
e Q-» TuningInstance* ------------ > Tuner
Measure § 4
| |
ParamSet $eval_batch()
Terminator -

[NB: In many table prints we suppres cols for readability.]

ParamSet - Parameters and Ranges

Scalar doubles, integers, factors or logicals are combined to
define a multivariate search space (SS).

ss = ps(
<id> = p_int(lower, upper),
<id> = p_dbl(lower, upper),
<id> = p_dct(levels),
<id> = p_1gl())

id is identifier. Lower/upper ranges, levels categories.

learner = lrn("classif.rpart”,
cp = to_tune(0.601, 0.1, logscale = TRUE))
learnerSparam_set$search_space() # for inspection

Or, use to_tune() to set SS for each param in Learner. SSis
auto-generated when learner is tuned. Params can be arbitrarily
transformed by setting a global trafo in SS, or p_* shortforms,
logscale = TRUE is short for most common choice.

Terminators - When to stop

Construction: trm(.key, ...)

¢ evals(n_evals)
After iterations.

e run_time (secs)
After training time.

¢ clock_time (stop_time)
At given timepoint.

e perf_reached (level)
After performance was reached.

e stagnation (iters, threshold)
After performance stagnated.

¢ combo (list_of_terms, any=TRUE)
Combine terminators with AND or OR.

as.data.table(mlr_terminators) # list all

Tuninglnstance* - Search Scenario

Evaluator and container for resampled performances of HPCs.
The (internal) eval_batch(xdt) calls benchmark() to eval a
table of HPCs. Stores archive of all evaluated experiments and
final result.

instance = TuningInstanceSingleCritSnew(task,
learner, resampling, measure,terminator, ss)

store_benchmark_result = TRUE to store resampled
evals and store_models = TRUE for fitted models.

Example

learner = 1rn("classif.svn’, kernel = "radial’, type = "C-classification")
ss = ps(cost = p_dbl(le-4, 1e4, logscale = TRUE),
gamma = p_dbl(1e-4, 1e4, logscale = TRUE))

evals = trm("evals”, n_evals = 20)
instance = TuningInstanceSingleCritSnew(task, learner, resampling, measure, evals,
ss)

tuner = tnr("random_search")
tunerSoptimize(instance)

instanceSresult

Use TuningInstanceMultiCrit for multicriteria tuning.

Tuner - Search Strategy

Generates HPCs and passes to tuning instance for evaluation
until termination. Creation: tnr (. key, ...)

e grid_search (resolution, batch_size)
Grid search.

¢ random_search (batch_size)
Random search.

e design_points (design)
Search at predefined points.

¢ random_search (batch_size)
Random search.

e nloptr (algorithm)
Non-linear optimization.

¢ gensa(smooth, temperature)
Generalized Simulated Annealing.

e irace
lterated racing.

as.data.table(mlr_tuners) # list all

Logging and Parallelization
1gr::get_logger("bbotk")$set_threshold("<level>")

Change log-level only for mir3tuning.

future::plan(strategy)

Sets the parallelization backend. Speeds up tuning by running
iterations in parallel.

Execute Tuning and Access Results

tuner$optimize(instance)

as.data.table(instanceSarchive)

instanceSresult atatable row with optimal HPC and estimated pe

Get evaluated HPcs and performances; and result. x_domain_*
cols contain HP values after trafo (if any).

learnerSparam_setSvalues =
instanceSresult_learner_param_vals

Set optimal HPC in Learner.

Example

learner = lrn("classif.svm’, type = "C-classification”, kernel = "radial”,
cost = to_tune(1e-4, 1e4, logscale = TRUE),
gamma = to_tune(le-4, Te4, logscale = TRUE))

instance = tune(method = "grid_search”, task = tsk('iris"), learner = learner,

resampling = rsmp ("holdout"), measure = msr(“classif.ce"), resolution = 5)

Use tune()-shortcut.

AutoTuner - Tune before Train
Wraps learner and performs integrated tuning.

at = AutoTunerS$Snew(learner,
terminator, tuner)

resampling, measure,

Inherits from class Learner. Training starts tuning on the
training set. After completion the learner is trained with the
“optimal” configuration on the given task.

at$train(task)

atSpredict(task, row_ids)

at$learner

Returns tuned learner trained on full data set.

atStuning_result

Access tuning result.

at = auto_tuner(method = "grid_search", learner,
resampling, measure, term_evals = 20)

Use shortcut to create AutoTuner.

Nested Resampling
Just resample AutoTuner; now has inner and outer loop.

Example

inner = rsmp(“holdout")
at = auto_tuner(method = "gensa’, learner, inner, measure, term_evals = 20)
outer = rsmp(‘cv”’, folds = 2)

rr = resample(task, at, outer, store_models = TRUE)

as.data.table(rr)

Check inner tuning results for stable HPs.

rréscore()

Predictive performances estimated on the outer resampling.

extract_inner_tuning_archives(rr)

All evaluated HP configurations.
rrSaggregate()
#> classif.ce
#> 0.04

Aggregates performances of outer resampling iterations.

rr = tune_nested(method = "grid_search", task,
learner, inner, outer, measure, term_evals = 20)

Use shortcut to execute nested resampling.

https://mlr-org.com/
https://cheatsheets.mlr-org.com/

