
Hyperparameter Tuning with mlr3tuning::CHEAT SHEET
Class Overview

The package provides a set of R6 classes which allow to (a)
define general hyperparameter (HP) tuning instances, i.e., the
black-box objective that maps HP configurations (HPCs) to
resampled performance values; (b) run black-box optimzers; (c)
combine learners with tuners (for nested resampling).

[NB: In many table prints we suppres cols for readability.]

ParamSet - Parameters and Ranges

Scalar doubles, integers, factors or logicals are combined to
define a multivariate search space (SS).

id is identifier. lower/upper ranges, levels categories.

Or, use to_tune() to set SS for each param in Learner. SS is
auto-generated when learner is tuned. Params can be arbitrarily
transformed by setting a global trafo in SS, or p_* shortforms,
logscale = TRUE is short for most common choice.

Terminators - When to stop

Construction: trm(.key, ...)

evals (n_evals)

After iterations.
run_time (secs)

After training time.
clock_time (stop_time)

At given timepoint.
perf_reached (level)

After performance was reached.
stagnation (iters, threshold)

After performance stagnated.
combo (list_of_terms, any=TRUE)

Combine terminators with AND or OR.

TuningInstance* - Search Scenario

Evaluator and container for resampled performances of HPCs.
The (internal) eval_batch(xdt) calls benchmark() to eval a
table of HPCs. Stores archive of all evaluated experiments and
final result.

store_benchmark_result = TRUE to store resampled
evals and store_models = TRUE for fitted models.

Example

Use TuningInstanceMultiCrit for multi-criteria tuning.

Tuner - Search Strategy
Generates HPCs and passes to tuning instance for evaluation
until termination. Creation: tnr(.key, ...)

grid_search (resolution, batch_size)
Grid search.
random_search (batch_size)

Random search.
design_points (design)

Search at predefined points.
random_search (batch_size)

Random search.
nloptr (algorithm)

Non-linear optimization.
gensa (smooth, temperature)

Generalized Simulated Annealing.
irace

Iterated racing.

Logging and Parallelization

Change log-level only for mlr3tuning.

Sets the parallelization backend. Speeds up tuning by running
iterations in parallel.

Execute Tuning and Access Results

Get evaluated HPcs and performances; and result. x_domain_*
cols contain HP values after trafo (if any).

Set optimal HPC in Learner.

Example

Use tune()-shortcut.

AutoTuner - Tune before Train
Wraps learner and performs integrated tuning.

Inherits from class Learner. Training starts tuning on the
training set. After completion the learner is trained with the
“optimal” configuration on the given task.

Returns tuned learner trained on full data set.

Access tuning result.

Use shortcut to create AutoTuner.

Nested Resampling

Just resample AutoTuner; now has inner and outer loop.

Example

Check inner tuning results for stable HPs.

Predictive performances estimated on the outer resampling.

All evaluated HP configurations.

Aggregates performances of outer resampling iterations.

Use shortcut to execute nested resampling.

ss = ps(

 <id> = p_int(lower, upper),

 <id> = p_dbl(lower, upper),

 <id> = p_dct(levels),

 <id> = p_lgl())

learner = lrn("classif.rpart",

 cp = to_tune(0.001, 0.1, logscale = TRUE))

learner$param_set$search_space() # for inspection

as.data.table(mlr_terminators) # list all

instance = TuningInstanceSingleCrit$new(task,

 learner, resampling, measure,terminator, ss)

optimize HPs of RBF SVM on logscale

learner = lrn("classif.svm", kernel = "radial", type = "C-classification")

ss = ps(cost = p_dbl(1e-4, 1e4, logscale = TRUE),

 gamma = p_dbl(1e-4, 1e4, logscale = TRUE))

evals = trm("evals", n_evals = 20)

instance = TuningInstanceSingleCrit$new(task, learner, resampling, measure, evals,

ss)

tuner = tnr("random_search")

tuner$optimize(instance)

instance$result

> cost gamma learner_param_vals x_domain classif.ce

> 1: 5.852743 -7.281365 <list[4]> <list[2]> 0.04

as.data.table(mlr_tuners) # list all

lgr::get_logger("bbotk")$set_threshold("<level>")

future::plan(strategy)

tuner$optimize(instance)

as.data.table(instance$archive)

> cost gamma classif.ce uhash x_domain_cost x_domain_gamma

> 1: 3.13 5.55 0.56 b8744... 3.13 5.55

> 2: -1.94 1.32 0.10 f5623... -1.94 1.32

instance$result # datatable row with optimal HPC and estimated perf

learner$param_set$values =

 instance$result_learner_param_vals

learner = lrn("classif.svm", type = "C-classification", kernel = "radial",

 cost = to_tune(1e-4, 1e4, logscale = TRUE),

 gamma = to_tune(1e-4, 1e4, logscale = TRUE))

instance = tune(method = "grid_search", task = tsk("iris"), learner = learner,

 resampling = rsmp ("holdout"), measure = msr("classif.ce"), resolution = 5)

at = AutoTuner$new(learner, resampling, measure,

 terminator, tuner)

at$train(task)

at$predict(task, row_ids)

at$learner

at$tuning_result

> cost gamma learner_param_vals x_domain classif.ce

> 1: 5.270814 -4.414869 <list[4]> <list[2]> 0.08

at = auto_tuner(method = "grid_search", learner,

 resampling, measure, term_evals = 20)

inner = rsmp("holdout")

at = auto_tuner(method = "gensa", learner, inner, measure, term_evals = 20)

outer = rsmp("cv", folds = 2)

rr = resample(task, at, outer, store_models = TRUE)

as.data.table(rr)

> learner resampling iteration

> 1: <AutoTuner[37]> <ResamplingCV[19]> 1

> 2: <AutoTuner[37]> <ResamplingCV[19]> 2

extract_inner_tuning_results(rr)

> iteration cost gamma classif.ce learner_param_vals x_domain

> 1: 1 1.222198 -0.4974749 0.08 <list[4]> <list[2]>

> 2: 2 2.616557 -3.1440039 0.08 <list[4]> <list[2]>

rr$score()

> learner iteration prediction classif.ce

> 1: <AutoTuner[40]> 1 <PredictionClassif[19]> 0.05333333

> 2: <AutoTuner[40]> 2 <PredictionClassif[19]> 0.02666667

extract_inner_tuning_archives(rr)

> iteration cost gamma classif.ce runtime resample_result

> 1: 1 -7.4572 4.1506 0.68 0.013 <ResampleResult[20]>

> 21: 2 1.0056 0.4003 0.12 0.014 <ResampleResult[20]>

rr$aggregate()

#> classif.ce

#> 0.04

rr = tune_nested(method = "grid_search", task,

 learner, inner, outer, measure, term_evals = 20)

mlr-org.com, cheatsheets.mlr-org.com

https://mlr-org.com/
https://cheatsheets.mlr-org.com/

